Lawrence Krauss

I have been recently debating several atheists on Facebook and I have to say it has been pretty exhausting.

If you are wondering why atheists are reviled more than murderers, liars, lawyers, politicians and even pedophiles, you need look no further than theoretical physicist, cosmologist, and spurious troll Lawrence Krauss.

Ever met someone who hated something or someone so much they were utterly incapable of addressing the matter objectively? That’s Lawrence Krauss, a man to whom apparently the Massachusetts Institute of Technology gave a PhD.

A pouting, petulant, tantrum-throwing toad of a man, it is no mystery he cohabitates the same fetid mind-swamp as Richard Dawkins, Sam Harris, and the late, easily baffled contrarian Christopher Hitchens. Having listened now to upwards of twenty hours of this fanatic’s half-baked rants, I can safely say if Lawrence Krauss is the disfigured face of the new naturalist even the dullest empiricism cannot survive the reign of such men.

TLDR

I recently gave a link to someone on Facebook in response to a post they made. They wrote “TLDR” in response, which I had to admit I didn’t know what that stood for.

Apparently it stands for “too long, didn’t read.”

He declined the comment because it was too long. I am not kidding—he said it was too long.

LOL!

I offer this as proof positive that most people do not possess the intellectual grit, the sheer psychic strength, or the honesty to examine anything contrary to their shallow and comfortable assumptions.

After a time ignorance wears like old leather.

Far too comfortable to take off.

Black Courts

To many of my friends who are alarmed at the slow Sovietizing of our republic, I offer these reminders:

You will never tame the NSA—you won’t. You will not redeem them, or reform them, or reign them in with legislation. Why? Two reasons:

  1. Either there are tens of thousands of threats—virological, bacteriological, nuclear—against this nation daily that we are being kept in the dark about, and which demand an ever materializing police state to thwart; or
  2. The NSA and the other intelligence services have descended so far into paranoia and ghost-chasing that they are wholly moonstuck.

If the former, it goes to the cowardice of our administrations (past and present) that we tolerate monsters, partner with sociopaths, and never really gain anything from all the wars we start. If the latter, they are simply organizationally deranged, a sect that has to create endless shadow-villains and false flags to justify their ever-expanding budgets and powers.

It doesn’t matter which of these is true, because whichever one is the case, or some shade in between, they have already infected the courts and they already have their sympathizers on the bench.

It is irrelevant what is written in the U.S. Constitution if some judge, shadow court, or even our Supreme Justices, just kinda decide one day it doesn’t mean that anymore. Like the Bible, they will just euphemize or allegorize away whatever they find offensive or too demanding of their character.

Devils prefer valor and high virtue be fables.

60 Feature Length Film Properties

2013 David Jetre 60 property 72 dpi collage - blurred

Here is Master Set No.1, itself 1 of 5. I now have over 300+ intellectual properties for film, television and games.

These are my first 60 intellectual film properties. Some are finished scripts, some are half-finished, and some are treatments.

Sorry for the blur-tease, but I no longer post my original material online as invariably, about a year, two or three later they end up on the screen under the name of someone else. For a few years now it seems every time I release a script for someone to read, or register it, or post the high concept details of the narrative, I can visit about six websites of filmmakers I know, and lo and behold, they have a new script eerily close to mine in their catalog.

So, I guess I am just done doing everyone’s work for them.

If you are on my short list of trusted reviewers I will always look forward to your valuable input. If you aren’t, well, you’ll have to wait for the audition or the opening weekend.

Timothy G. Standish, biology

Dr. Standish is associate professor of biology at Andrews University in Berrien Springs, Michigan. He holds a B.S. in zoology from Andrews University, an M.S. in biology from Andrews University, and a Ph.D. in biology and public policy from George Mason University (University of Virginia), Charlottesville, Virginia. He teaches genetics at Andrews University and is currently researching the genetics of cricket (Achita domesticus) behavior.


Reading The Blind Watchmaker by Richard Dawkins was a pivotal experience for me. I had recently started my Ph.D. program at George Mason University and eagerly signed up for a class entitled “Problems in Evolutionary Theory.” The Blind Watchmaker was required reading, and with growing enthusiasm I noted glowing endorsements printed on the cover. According to The Economist, this book was “as readable and vigorous a defense of Darwinism as has been published since 1859.” Lee Dembart, writing for the Los Angeles Times, was even more effusive: “Every page rings of truth. It is one of the best science books—of the best of any books—I have ever read.” A book that was “Winner of the Royal Society of Literature’s Heinemann Prize, and the Los Angeles Times Book Award” must contain nothing but undistilled brilliance. I felt smug with confidence as I paid for the book and left the store, brimming with ebullience to start reading.

After wading through all the hyperbole, I was stunned by the ideas put forward by Dawkins in The Blind Watchmaker. Rhetoric burnished the arguments with a glittering sheen, briefly giving the impression that pebbles were gems. But once each metaphor was stripped aside, the core ideas did not support the idea that natural selection could account for the origin of life and the meaningful complexity of organisms. Most startling to me was the realization that, one of the book’s core theses, in fact, violated the principle of natural selection.

Dawkins wove two ideas together in supporting Darwinism. The first idea was that, given enough chances, the improbable becomes probable. For example, flipping a coin ten times in a row and getting heads each time is very unlikely; one would only expect it to happen about 1 in 1,024 tries. Most of us would not sit around flipping coins just to see it happen, but if we had a million people flipping coins, we would see it happen many times. This phenomenon is publicized in the newspapers when lottery winners are announced. Winning a million-dollar jackpot is unlikely, but with millions of people purchasing tickets, eventually someone wins.

Dawkins admits that the odds on life starting from a random collection of chemicals is very slim, but given an immense universe and the billions of years it has existed, the improbable becomes probable. In this is echoed the logic of Ernst Haeckel, who wrote in his book The Riddle of the Universe, published in 1900:

Many of the stars, the light of which has taken thousands of years to reach us, are certainly suns like our own mother-sun, and are girt about with planets and moons, just as in our solar system. We are justified in supposing that thousands of these planets are in a similar stage of development to that of our earth … and that from its nitrogenous compounds, protoplasm has been evolved—that wonderful substance which alone, as far as our knowledge goes, is the possessor of organic life.

Haeckel was optimistic about the presence of conditions that could support life on planets other than earth, and it is in this that one of the problems with Dawkins’ argument emerges. While the universe is immense, those places where life as we know it could survive, let alone come into being, seem to be few and far between. So far, only one place has been discovered where conditions for life are present, and we are already living on it. Thus, there is not much cause for optimism that the universe is teeming with planets bathed in a primordial soup from which life might evolve. Dawkins wrote glibly of the immensity of the universe and its age, but failed to provide one example, other than the earth, where the unlikely event of spontaneous generation of life might occur. Even if the universe were teeming with proto-earths, and the spans of time suggested by modern science were available, this is still not a great argument, as if something is impossible—in other words, the odds of it happening are zero—then it will never happen, not even in an infinite amount of time. For example, even if we had our million people flipping coins, each with ten flips in a row, the odds on any one of them flipping and getting 11 heads in ten tries is zero because the odds of getting 11 heads in ten tries with one person is zero. The bottom line is that the odds on life evolving from nonliving precursors is essentially zero. Ironically, this was the stronger of the two ideas, or arguments, presented by Dawkins.

The second argument was presented as an analogy: imagine a monkey typing on a typewriter with 27 keys, all the letters in the English alphabet and the space bar. How long would it take for the monkey to type something that made any sense? Dawkins suggests the sentence spoken by William Shakespeare’s Hamlet who, in describing a cloud, pronounces, “Methinks it is like a weasel.” It is not a long sentence and contains very little meaning, but it works for argument’s sake. How many attempts at typing this sentence would it take a monkey, which would presumably be hitting keys randomly, to type the sentence?

As it turns out, the odds can be easily calculated as the probability of getting each letter or space correct raised to the power of the number of positions at which they have to be correct. In this case, the probability of the monkey typing “m” at the first position of the sentence is 1/27 (we won’t worry about capitalization). The sentence has 28 characters in it, so the probability is (1/27)28 or 1.2 x 10–40. That is about one chance in 12,000 million million million million million million! You would want a lot of monkeys typing very fast for a long time if you ever wanted to see this happen!

To overcome this problem with probability, Dawkins proposed that natural selection could help by fixing each letter in place once it was correct and thus lowering the odds massively. In other words, as a monkey types away, it is not unlikely that at least one of the characters it types will be in the correct position on the first try. If this letter was then kept and the monkey was only allowed to type in the remaining letters until it finally had the correct letter at each position, the odds fall to the point that the average diligent monkey could probably finish the task in an afternoon and still have time to gather bananas and peanuts from admiring observers. Dawkins got his computer to do it in between 40 and 70 tries.

Luckily I had taken biochemistry before reading The Blind Watchmaker. Organisms are made of cells, and those cells are composed of little protein machines that do the work of the cell. Proteins can be thought of as sentences like “Methinks it is like a weasel,” the difference being that proteins are made up of 20 different subunits called amino acids instead of the 27 different characters in our example. The evolution of a functional protein would presumably start out as a random series of amino acids one or two of which would be in the right position to do the function the protein is designed to do. According to Dawkins’ theory, those amino acids in the right location in the protein would be fixed by natural selection, while those that needed to be modified would continue to change until they were correct, and a functional protein was produced in relatively short order. Unfortunately, this ascribes an attribute to natural selection that even its most ardent proponents would question, the ability to select one nonfunctional protein from a pool of millions of other nonfunctional proteins.

Changing even one amino acid in a protein can alter its function dramatically. A famous example of this is the mutation that causes sickle cell anemia in humans. This disease causes a multitude of symptoms, ranging from liver failure to tower skull syndrome. It is caused by the replacement of an amino acid called glutamate, normally at position number six, with another amino acid called valine. This single change causes a massive difference in how the alpha globin subunit of hemoglobin works. The ultimate sad consequence of this seemingly insignificant mutation in the protein causes premature death in thousands of individuals each year. In other proteins, mutations to some, but not all, areas can result in a complete loss of function. This is particularly true if the protein is an enzyme, and the mutation is in its active site.

What Dawkins is suggesting is that a very large group of proteins, none of which is functional, can be acted on by natural selection to select out a few that, while they do not quite do the job yet, with some modification via mutation, can do the job in the future. This suggests that natural selection has some direction or goal in mind, a great heresy to those who believe evolutionary theory.

This idea of natural selection fixing amino acids as it constructs functional proteins is also unsupported by the data. Cells do not churn out large pools of random proteins on which natural selection can then act. If anything, precisely the opposite is true. Cells only produce the proteins they need to make at that time. Making other proteins, even unneeded functional ones, would be a wasteful thing for cells to do, and in many cases, could destroy the ability of the cell to function. Most cells only make about 10% of the proteins they are capable of producing. This is what makes liver cells different from those in the skin or brain. If all proteins were expressed all the time, all cells would be identical.

In reality, the problem of evolving life is much more complex than generation of a single functional protein. In fact, a single protein is just the tip of the iceberg. A living organism must have many functional proteins, all of which work together in a coordinated way. In the course of my research, I frequently physically disrupt cells by grinding them in liquid nitrogen. Sometimes I do this to obtain functional proteins, but more often to get the nucleic acids RNA or DNA. In any case, I have yet to find that the protein or nucleic acid I was working on was not functional after being removed from the cell, and yet, even though all the cell components were present and functional following disruption, I have never observed a single cell start to function again as a living organism, or even part of a living organism. For natural selection to occur, all proteins on which it is to act must be part of a living organism composed of a host of other functional protein machines. In other words, the entire system must exist prior to selection occurring, not just a single protein.

“Problems in Evolutionary Theory” was a class that made me realize the difficulties those who discount the possibility of a Creator have with their own theories. The problems with evolutionary theory were real, and there were no simple convincing resolutions.

Progressing in my studies, I slowly realized that evolution survives as a paradigm only as long as the evidence is picked and chosen and the great pool of data that is accumulating on life is ignored. As the depth and breadth of human knowledge increases, it washes over us a flood of evidence deep and wide, all pointing to the conclusion that life is the result of design. Only a small subset of evidence, chosen carefully, may be used to construct a story of life evolving from nonliving precursors. Science does not work on the basis of picking and choosing data to suit a treasured theory. I chose the path of science which also happens to be the path of faith in the Creator.

I believe God provides evidence of His creative power for all to experience personally in our lives. To know the Creator does not require an advanced degree in science or theology. Each one of us has the opportunity to experience His creative power in re-creating His character within us, step by step, day by day.

John R. Rankin, mathematical physics

Dr. Rankin is senior lecturer in the Department of Computer Science and Computer Engineering, La Trobe University, Australia. He holds a B.S. (Hons) with first class honors in applied mathematics from Monash University, a Ph.D. in mathematical physics from the University of Adelaide, and a postgraduate diploma of computer science from the University of Adelaide. He has taught in tertiary institutions for more than 17 years.

____________________________________________________________________

When we ask about the origins of everything, what are the choices? We basically really only have two choices: evolution or creation. Evolution has its problems and no scientist denies that. But that doesn’t answer the question of why I believe in creation. Theories can be easily patched up with extra assumptions and more circuitous explanations and couldn’t the problem areas simply be put down to our present state of knowledge? Could we not simply hope that in the not-too-distant future, with further research, each particular thorny problem in evolution will eventually get resolved satisfactorily, one by one? In my perspective, however, if we think of the problem areas in evolution as “holes” in the theory, these holes are getting bigger with time, and they are not going away.

Evolution covers such a wide span of scientific disciplines that no one area is sufficient to disprove the theory. In earlier days, scientists accepted the assurance that although they had insurmountable difficulties with evolution in their own area of scientific work, evolution “works” and makes sense in other areas of research and in basic science in general. But as time has gone on, the problem areas for evolution in the various disciplines of science have not gone away but remained and are standing out like “sore thumbs.” With this situation, scientists have become aware of the difficulties for evolution in all other areas, in addition to their own. Now they are starting to say that maybe there are fundamental problems with the evolution explanation itself.

Let me describe my original area of research and how it related to evolution theory. My early research work was in the area of cosmology. This involves a deep study of mathematics and astronomy and, in particular, Einstein’s Theory of General Relativity. In cosmology we have a number of “cosmological models” that we study. These are mathematical solutions of the Einstein equations that describe different possible universes allowed according to the laws of physics. My research project was to pursue the question: if the universe started off as a homogeneous distribution of atomic gases and plasma, would the typical small statistical fluctuations in density grow and condense under the known laws of gravity to form protogalaxies, the precursors of galaxies with all their complex constituents of globular clusters, stars, planets, moons, asteroids and comets of today?

This is the current belief of evolution theory: that an initially homogeneous and uninteresting universe became differentiated over billions of years into the complex and beautiful structure of interrelated objects that we know and see today. The attitude of my research supervisor was, “We are here; therefore, we must have evolved!” and by assumption everything evolved from a uniform gaseous state.

This is certainly a big question and to tackle it I looked into the initial phases of this supposed process. So the question I tackled was: would statistical fluctuations in the cosmological models currently believed to be realistic representations of the cosmological structure of the universe grow under the gravitational laws of general relativity to the level of becoming statistically significant? Linearized equations are suitable for the expected background random density fluctuations. If these equations say that, for standard cosmological models, initial random (insignificant) fluctuations will grow over cosmological time (measured in billions of years) to become statistically significant—at which point the linearized equations break down and a fully nonlinear mathematical treatment is required—then we have established the foundations for the evolution theory.

After five years of heavy mathematical research concentrated on this one question, the answer came back: no. Indeed, there was some growth in the initial fluctuations but, even over 10 or 20 billion years, the initial statistical fluctuations in density were still at the level of fluctuation that could be expected on statistical grounds in a homogeneous universe. Previous research had seemed to indicate that statistical fluctuation would condense rapidly. However, these calculations had been done in the background of unrealistic cosmological models, namely models that were static and mostly nonrelativistic. These static models could not be justified either from the point of view of physical theory or from cosmological observations and what we now know about the universe.

Of course, this result was a great disappointment to the strong believers of evolution theory. It seemed obvious that gravity would do this simple chore required at the foundation of evolution theory. What was counteracting the natural force of gravity in condensing fluctuations was the expansion of the universe itself, which is also a product of the laws of gravitation. The standard reaction to such a negative result is to search for alternative considerations, apart from gravity, that could be involved to generate statistically significant fluctuations. For example, thermodynamics, that is, fluctuations in heat distribution and the flow of heat, could “assist” gravity to do its job. Another idea is to invoke the interaction between the different fluid components in the cosmological model: radiation, plasma types and dust. Perhaps the point of decoupling between radiation and matter is a significant enough stimulus to accelerate the process of protogalaxy formation. A third type of mechanism is to resort to turbulence to counteract the disruptive effect of the expansion of the universe on the protogalaxy formation process.

Each of these additional mechanisms in support of galaxy formation brings much greater mathematical complexity to the problem. It is easy to maintain the standard line of evolution theory that a homogeneous gaseous universe evolved into a hierarchically structured galactic universe by invoking complex mechanisms such as these, for which the proof is still outstanding and must remain so for quite some time, because of the enormously increased complexity of the mathematics involved in the new explanations. However, the indications are quite clear that the effects of heat, energy transfers between fluid components, and turbulence are all disruptive to the growth of density fluctuations.

This is an example from one area of research of a major flaw in the evolution explanation from which evolution has never recovered. And yet books still continue to come out in increasing numbers saying that the evolution explanation is correct and incorporating the idea that, early in the universe, gases condensed to form protogalaxies, which further condensed into galaxies of stars and planets with the emergence of life. Do we hear of any of these supporters being willing themselves to spend years of their lives pursuing the complex mathematics involved in their patched-up but unproven theories? Alternatively, are they willing to pay others to do this work and approach the problems objectively, that is, willing to accept that physical theory could result in a negative answer, indicating that their modified explanations are also wrong?

Unfortunately, the supporters of evolution now seem to be less willing to support or pursue this research themselves. As a result, there are few researchers left in the field, with the exception of the changing population of final-year research students. After all the research to date, we are still unable to explain the origin of galaxies as inhomogeneities in the universe from the perspective of evolution. We seem, in fact, to be further away from a satisfactory explanation of evolutionary galactic origins than we were when we started to study the subject, using modern physical theory. As in one field of science, so in all others, we are unable to explain the origin of the beautiful and complex realities of this world from an evolutionist approach.

The burden of evolution is to explain everything, including the mathematics, the logic and the thinking processes involved. This is a burden that increases in size as knowledge continues to grow. It is a burden that takes away our firm foundations for thought and scientific explanation. Maybe the evolutionist approach is wrong, then?

The creationist approach allows us to have an exceedingly intricate and beautiful world at the outset, ready for us to explore its wonders scientifically. This is the approach that puts us on a firm foundation, and this is why I believe in creation rather than evolution.